
International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

I/O Efficient Algorithm for Graph Pattern
Matching Problem

 Pushpi Rani, Abhishek Srivastava
Abstract— This paper presents an I/O efficient algorithm for graph pattern matching problem. It is based on decision tree approach proposed by

B. T. Messmer and H. Bunke. In that paper, if the time needed for preprocessing is neglected, the computational complexity of their approach is

only polynomial in the number of input graph vertices. However, the decision tree is of exponential size. It’s not practical for the graphs with large

size.. In the new algorithm, we increases the preprocessing time as well as space complexity, it can remarkably reduces the number of I/Os and

keeps the same time complexity. The algorithm is improved here to reduce its I/O complexity and to achieve a better performance on large graphs.

Keywords- Decision tree; Graph isomorphism; Subgraph isomorphism; I/O complexity; Adjacency matrix; Permutation matrix;

 ——————————  ——————————

1 INTRODUCTION

Graph pattern matching problem is a problem to find the
patterns in a large data graph [1] that match a user-given
graph pattern. It is one of the most profound areas of
computer science. Because of it’s widely applications, it is a
very active area with intensive researches for many years. It is
based on graph or subgraph isomorphism. The graph
isomorphism problem [2] is the problem of determining
whether two graphs are isomorphic.
Graph is very expressive and effective data structure to
represent the relationship among data objects, so it is widely
used to represent the large volume of data. With the rapid
growth of the Internet and new data analyzing techniques,
there exists a huge volume of data.
When we represent these data in form of graph, the size of
graph will be also very large. If, the size of graph is very large,
it may be possible that whole data graph will be not fit in main
memory while processing. In that case some data must be
placed in secondary memory and transfer in main memory
while processing. The transfer of data between main memory
and secondary memory is known as I/O communication [3].
This communication between internal and external memory
becomes bottleneck in case of large volume of data. Therefore,
an I/O efficient algorithm is needed; this can manage the disk
access as a part of algorithm. The aim of I/O efficient
algorithm is to design an algorithm that minimizes
the transfer of data between internal and external memory.
The I/O algorithm also known as EM algorithm (or out-of-
core algorithms) design was effectively started in the late
eighties [1] by Aggarwal and Vitter. For designing I/O
algorithms they proposed an important model called Parallel
Disk Model (PDM) [3] in 1986. This model proposed that a

good I/O algorithm should transfer data between main
memory and disk in a blocked manner, and should use all of
the available disks concurrently. An optimal I/O algorithm
under this model minimizes the number of such blocked,
parallel I/O operations it performs. So, the goal of I/O
efficient algorithm is to eliminate or minimize the I/O
bottleneck through better algorithm design.

2 PROBLEM DEFINITION

Graph Pattern matching problem is also known as subgraph
isomorphism problem.
There are two variations of this problem.
The first one is to detect graph/subgraph isomorphism
between two unknown graphs.
 In this case the problem is to find a subgraph of an input
graph, called the target, such that the subgraph is isomorphic
to another input graph, called the pattern.
Two Graphs G1(V1, E1, L1) and G2(V2, E2, L2) are
isomorphic, if
a) There exists a bijective mapping [2] between the vertices in
V1 and V2.
b) There is an edge between two vertices of one graph if and
only if there is an edge between the two corresponding
vertices in the other graph, and
c) The labels on the vertices and edges are preserved by the
mapping.
The other one is to detect graph/subgraph isomorphism from
an input graph to a database of model graphs [4]. There is
often a database of graphs, so-called model graphs, and a
single input graph that must be tested. It means we already
have a graph database, and then test if a new input graph is
graph or subgraph isomorphic to a model graph in the
database or not.

3 DECISION TREE ALGORITHM

The new algorithm is based on decision tree based graph
isomorphism algorithm. The basic idea of the isomorphism
algorithm is that for each model graph, first computation of all

 Pushpi Rani is currently pursuing masters of technology program in
computer science engineering in Jaypee University of Engineering
and Technology,Guna, India, PH-7828788769
 E-mail: pushpi.05.wit@gmail.com

 Abhishek Srivastava is currently working in department of
computer science engineering in Jaypee University of Engineering
and Technology,Guna, India, PH-8103584248
 E-mail: abhishek.srivastava@juet.ac.in

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

possible permutations of its adjacency matrix has been done
and then the permutation matrices were transformed into a
decision tree. At run time, the matrix of the input graph that is
pattern graph is matched to those adjacency matrices in the
decision tree which are identical to it. The permutation
matrices that correspond to these adjacency matrices represent
the graph or subgraph isomorphisms that we are looking for.
We will briefly describe the decision tree construction
procedure. For this, first we will introduce the row-column
elements [4].
A row-column element ai of a n X n matrix m is a vector
ai = (m1i, m2i , … , mii, mi(i-1) , …, mi1)
Figure 1 illustrates this representation.

0 1 1 0

1 0 1 0

 1 1 0 1

0 0 1 0

 a1 a2 a3 a4

 Figure 1: Row column representation of matrix

With row-column representation of matrix, we organize the
model graphs into a decision tree. A decision tree sample is
shown in Fig. 2 [4].

At the top of the decision tree there is a root node (dummy
node). Its direct successors constitute the first level of the
decision tree. On the first level, the classification is done by
comparing the first row-column element of the input graph to
the first row-column element ai of each permutation matrix.
Likewise at nth level of the decision tree the classification is
done by comparing the row-column an of permutation
matrices.

The graph g1 has 4 vertices, so it has 4! =24 permutation
matrices. The row-column element of these permutation

matrices is used to construct the decision tree. Here, we are
considering only six permutations matrix of node at which
constructs only a part of decision tree. Similar procedure will
be repeated for node b, c, and d also. Figure 2 illustrate the
permutation matrix and decision tree for node a in the graph
g1.

4 I/O EFFICIENT ALGORITHM

In the graph isomorphism and subgraph isomorphism
algorithm discussed above the decision tree is of exponential
size. If the vertices increase, it needs a huge amount of storage,
as the size of the decision tree is directly associated with the
permutation matrices of the model graphs. A graph with n

as the size of the decision tree is directly associated with the
permutation matrices of the model graphs. A graph with n
vertices has n! permutation matrices. To find the graph or sub-

graph isomorphism we will have to traverse the complete
decision tree. Therefore, the number of I/O depends on the
height of the decision tree. The maximum height of decision
tree is log N. So, total number of I/O in this case will be
O(logN/B) [5]. So, if we can reduce this number of I/O, the
I/O complexity of this algorithm will be reduced
subsequently. We use the invariant property of graph to do
this job. An invariant is a property such that if a graph has it
all isomorphic graphs have it.

We use the sum of adjacency matrix and number of nodes in
the pattern graph to find the graph or subgraph isomorphim.
The basic idea of new algorithm is, rather than traversing the
whole decision tree, we will traverse up to level n, where n is
the number of nodes in the pattern graph. Since, the number

of node in the pattern graph and its isomorphic graph must be
same, so, there is no need to traverse the decision tree beyond
that level. Since, we are using all the possible permutation of
adjacency matrix; it gives us all the possible combination of
nodes in the graph. Therefore, if any isomorphism present at
the bottom level of tree, then it must be present at the top level
also. Now, we use an array of list. This list stores the sum of
adjacency matrix at each level. The array contains the first
address of the list. For example, the sum of adjacency matrix
at level one is stored in the list at index one of the array, the
sum of adjacency matrix at level two is stored in the list at
index two of the array and so on. This representation is shown
in figure 3.

At run time, first we find the number of node in the pattern
graph and traverse the list at that index only. For example, if
the graph has five nodes, then the list at index five in array
will be traversed only. While traversing, if the sum of
adjacency matrix is equal to the sum of pattern graph, then we
transfer only that nodes in the main memory and perform the
matching operation. If both adjacency matrices are equal, then
we get the graph isomorphism of the pattern graph.

a

d

b

c

0

0

1 1

0

0

1
0

1

0
1 1

0 0 1

1

a

b

c

d

graph g1

Adjacency matrix of graph g1

 a b c d

graph g1

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 2: Decision tree construction for graph g1.

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

0 0 1 1

0 0 0 1

1 0 0 1

1 1 1 0

0 1 0 1

1 0 1 1

0 1 0 0

1 1 0 0

0 0 1 1

0 0 1 0

1 1 0 1

1 0 1 0

0

1
1

0 1
1

1

0 1

0

1

1

1 1

1

0

1
1

0

1

0 1 1

1

0 1 1 1
0 1

0

1

0 0

0

1 0 0

1

0

0

0

1 0

1

1

1

0

0

1

1 1 0 0

0

1

1

0 0 1
1

0 0

0 0

a

0 1
0

0 1

b

0

d
1

0

c

a b c d a b d c a c b d

a d b c a c d b a d c b

a

b

c

d

a

d

b

c

a

c

b

d

a

b

d

c

 a

c

d

b

a

d

c

b

a

c

d

b

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Figure 3 : Memory Representation of Array list

The row-column elements associated with predecessor row-
column element and the sum of row-column element are
organized in a data dictionary.

In the next section, the algorithm is explained with the help of
an example. For this we consider the model graph shown in
figure 1. Figure 2 represents its decision tree, which is not
complete.

In example as shown in figure 4 sum of adjacency matrix is 6
and the number of nodes in the pattern graph is 3. So, we
traverse the array list at index 3 only and the nodes having
sum equal to 6 will be transferred into main memory to
perform the matching operation.

 Figure 4: Pattern graph and its adjacency matrix.

 The algorithm is divided into two parts.

 Decision tree construction: It is preprocessing step

and contains two procedures: DECISION_TREE and

SUM. First one constructs the decision tree and later

one store the sum of decision tree in array.

 Matching algorithm: This is run time algorithm

which finds the isomorphism of pattern graph into

the database of model graph.

 Figure 5: DECISION_TREE Algorithm

Here, M Adjacency matrices and R row-column element.

In detail, the procedure works as follows: line 1 create the root
of decision tree, line 2 and 3 ensures that for each row- column
element all permutation of adjacency matrix are traversed. If
the same row column element is present in the adjacency
matrix then, there is no need to add new node in decision tree
(line 11), it means for every unique row-column element a
new node is created in the decision tree (line 13). Line 4-13
ensures this property. Whenever a new node is created its sum
is stored in the array list. For this procedure SUM is called in
line 14. In line 15 we update the value of adjacency matrix
which gives another row-column element. After this line 5
invoked, which assign this value into Rnew and repeat the
whole procedure again until the entire row-column element
has been traversed.

0 1 1

1 0 1

1 1 0

0 0 0

2

0

2 0

6 4 2

1

3

4

2

8 8

4

8 8 8 8

NULL

1. DECISION_TREE(R, M, A, S)

2. Create a dummy node.

3. for each R

4. for each M

5. Rnew = R[M[i]]

6. Go to parent of Rnew

7. for j=2 to M[i]

8. { count=0

9. if(R[j]=Rnew)

10. count++

11. if(count>0)

12. no operation

13. else

14. create a new node.

15. Call procedure SUM

16. M++ //Update M

a

c

b

a

b

c

a b c

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Figure 6: SUM procedure

The procedure SUM works as follows: If the first node is

added into the array list, only then if condition in line 1 will be

true, otherwise control goes in line 8. The line 2 and 9 update

the sum by adding the previous sum and the new row column

element value. Line 3 and 10 create a new node in the list and

line 5 and 11 store the sum into the node. Line 6 and 12 assign

the NULL value in the last node which ensures the list is

ended. In line 13 the address of newly created node is

assigned into the last node to create a link between nodes.

Line 4 and 14 update the value of last node. Line 7 store the

starting address of list into the first node.The algorithm

DECISION TREE creates a decision tree of one model graph in

the database. We will call this algorithm for the entire model

graph in the database.

4.1 I/O Complexity of Matching Algorithm

First we are explaining the MATCH algorithm, then its I/O
complexity has been analyzed Symbols used in this algorithm:
M= adjacency matrix of pattern graph.
S= Sum of adjacency matrix.
N=No of nodes in the pattern graph

In the algorithm MATCH, line 1 assign the starting address
ofarray list at index N into P. line 2 ensure that, this list is
traversed until it reach at the end. In line 3-5, it checks
whether the sum of pattern graph is equal to the sum stored

inthe list. If this condition is true, then the adjacency matrix
corresponding to that node is used for matrix matching
purpose. Line 5 updates the link after each node. Total no. of
I/Os to transfer pattern graph into main memory will be n/B.
No. of I/Os performed by while loop is P/B + n/B. By
mathematical induction we can prove that the P will always
be less than or equal to I * n2, where n is the level no. of
decision tree and I is the maximum number of nodes in the
model graph. Hence the I/O complexity of the MATCH
algorithm will be O (n/B (In)).

 Figure 7: MATCH Algorithm

5. CONCLUSION

We have presented an I/O efficient algorithm for graph
pattern matching matching algorithm, whose I/O complexity
is reduced, due to the use of array list. Since, this list in created
in preprocessing time, so time time complexity remains the
same. The algorithm is tailored for dealing with large graphs
without making particular assumptions on the nature of the
graphs to be matched and can be used for both isomorphism
and graph-subgraph isomorphism. The achievement seems
large area of interest as many real applications such as web
modeling, GIS demands new graph processing techniques to
access large data graphs effectively and efficiently.

REFERENCES

[1] A.Aggarwal and J. S.Vitter (1988). The input/output complexity of

sorting and related problems.Commun. ACM, 31(9):1116–1127.
[2] Ashay Dharwadker and Shariefuddin Pirzada (2008.) Graph

Theory, Orient Longman and Universities Press of India,

[3] Jeffrey Scott Vitter (2008) Algorithms and Data Structures for

External Memory

[4] B.T. Messmer*, H. Bunke (1999). A decision tree approach to

graph and subgraph isomorphism detection, Pattern Recognition

32 1979-1998.

[5] J. S. Vitter and E. A. M. Shriver, [1994] “Algorithms for parallel

memory I: Two-level memories,” Algorithmica, vol. 12, no. 2–3,

pp. 110–147

[6] John-Tagore Tevet (2008), Constructive Representation of

Graphs: A Selection of Examples, S.E.R.R., Tallinn.

SUM(S, R, A)

1. if (A[R[i]]=NULL)

2. sum= S[R[i-1]]+R[i]

3. Create a new node LIST in the

linked list

4. first=last= LIST

5. LIST[DATA]=sum

6. LIST[LINK}=NULL

7. A[R[i]]=first

8. else

9. sum= S[R[i-1]]+R[i]

10. Create a new node LIST in the

linked list

11. LIST[DATA]=sum

12. LIST[LINK}=NULL

13. last[LINK]=LIST

14. last=LIST

MATCH (M,S,N)

1. P=A[N]

2. While (P!=NULL)

3. if(P[DATA]=S)

4. //code for adjacency

matrix matching

5. P=P [LINK]

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 3, Issue 3, June-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

